5 years ago

AFLP diversity and spatial structure of Calycophyllum candidissimum (Rubiaceae), a dominant tree species of Nicaragua’s critically endangered seasonally dry forest

A Tribsch, A Dávila-Lara, M Affenzeller, H P Comes, V Díaz

The Central American seasonally dry tropical (SDT) forest biome is one of the worlds’ most endangered ecosystems, yet little is known about the genetic consequences of its recent fragmentation. A prominent constituent of this biome is Calycophyllum candidissimum, an insect-pollinated and wind-dispersed canopy tree of high socio-economic importance, particularly in Nicaragua. Here, we surveyed amplified fragment length polymorphisms across 13 populations of this species in Nicaragua to elucidate the relative roles of contemporary vs historical factors in shaping its genetic variation. Genetic diversity was low in all investigated populations (mean HE=0.125), and negatively correlated with latitude. Overall population differentiation was moderate (ΦST=0.109, P<0.001), and Bayesian analysis of population structure revealed two major latitudinal clusters (I: ‘Pacific North’+’Central Highland’; II: ‘Pacific South’), along with a genetic cline between I and II. Population-based cluster analyses indicated a strong pattern of ‘isolation by distance’ as confirmed by Mantel’s test. Our results suggest that (1) the low genetic diversity of these populations reflects biogeographic/population history (colonisation from South America, Pleistocene range contractions) rather than recent human impact; whereas (2) the underlying process of their isolation by distance pattern, which is best explained by ‘isolation by dispersal limitation’, implies contemporary gene flow between neighbouring populations as likely facilitated by the species’ efficient seed dispersal capacity. Overall, these results underscore that even tree species from highly decimated forest regions may be genetically resilient to habitat fragmentation due to species-typical dispersal characteristics, the necessity of broad-scale measures for their conservation notwithstanding.

Publisher URL: http://dx.doi.org/10.1038/hdy.2017.45

DOI: 10.1038/hdy.2017.45

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.