5 years ago

Targeted regulation of hygroscopicity of soybean antioxidant pentapeptide powder by zinc ions binding to the moisture absorption sites

In the present study, a targeted regulation of hygroscopicity of soybean antioxidant pentapeptide (SAP) powder was explored by zinc ions binding to its moisture absorption sites. Scanning electron microscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy and an energy-dispersive X-ray spectroscope were used to confirm the formation of the SAP-zinc complex. The results showed that morphology of SAP-zinc complex belonged to crystalline nanoparticles. The moisture sorption/desorption kinetics of the SAP-zinc complex changed compared to that of the SAP. In particular, the moisture sorption capacity of the SAP decreased and the distribution of adsorbed water changed after zinc chelation. Based on the binding of zinc ions to the moisture absorption sites, the hygroscopicity of SAP powder could be target regulated. Thus, this study could provide a new method to regulate the hygroscopicity of peptide powder.

Publisher URL: www.sciencedirect.com/science

DOI: S0308814617314644

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.