5 years ago

Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO2 Adsorption

Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal–Organic Framework with Mesoporous Silica for CO2 Adsorption
Jing Ding, Lei Wang, Zefeng Xia, Guofeng Guan, Nengjie Feng, Lijin Zhou, Hui Wan, Bingxue Li, Chong Chen
The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal–organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N2 adsorption–desorption, SEM, TEM, FT-IR, TG, XPS, and CO2-TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO2 adsorption indicated the stronger interactions between the surfaces and CO2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO2 adsorption–desorption experiments implied that the HS-1 had excellent reversibility of CO2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b08117

DOI: 10.1021/acsami.7b08117

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.