3 years ago

Hyperspectral image-based multi-feature integration for TVB-N measurement in pork

Total volatile basic nitrogen (TVB-N) content is an important index used to evaluate the freshness of pork. In this paper, a strategy for measurement of TVB-N content in pork through hyperspectral imaging (HSI) (400–1000 nm) was developed. Firstly, image textural features based on Gabor filter and spectral features were obtained from the hyperspectral image after determining the region of interest. Then, nine feature wavelengths were selected using partial least-squares projection algorithm. And, major components were obtained from the 2D principal component analysis (2DPCA). Finally, a calibration model was established based on major components using least-squares support vector machine to predict TVB-N values. The results of two methods for data fusion, which are 2DPCA and principal component analysis (PCA), are compared. The correlation coefficients of prediction (R P ) and root-mean-square errors of prediction (RMSEP) obtained through 2DPCA were 0.955 and 1.86 mg/100 g respectively, which was superior to the results based on PCA (R P  = 0.944, RMSEP = 2.07 mg/100 g). Compared to PCA, the residual prediction deviations (RPD) based on 2DPCA was raised from 3.01 to 3.35. Results demonstrated that the proposed model based on 2DPCA exhibited potential for nondestructive detection of TVB-N content in pork.

Publisher URL: www.sciencedirect.com/science

DOI: S0260877417303795

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.