4 years ago

Mesoporous Titania Microspheres with Highly Tunable Pores as an Anode Material for Lithium Ion Batteries

Mesoporous Titania Microspheres with Highly Tunable Pores as an Anode Material for Lithium Ion Batteries
Bodo D. Wilts, Ilja Gunkel, Xiao Hua, Michael G. Fischer, Thomas M. Bennett, Ullrich Steiner
Mesoporous titania microspheres (MTMs) have been employed in many applications, including (photo)catalysis as well as energy conversion and storage. Their morphology offers a hierarchical structural design motif that lends itself to being incorporated into established large-scale fabrication processes. Despite the fact that device performance hinges on the precise morphological characteristics of these materials, control over the detailed mesopore structure and the tunability of the pore size remains a challenge. Especially the accessibility of a wide range of mesopore sizes by the same synthesis method is desirable, as this would allow for a comparative study of the relationship between structural features and performance. Here, we report a method that combines sol–gel chemistry with polymer micro- and macrophase separation to synthesize porous titania spheres with diameters in the micrometer range. The as-prepared MTMs exhibit well-defined, accessible porosities with mesopore sizes adjustable by the choice of the polymers. When applied as an anode material in lithium ion batteries (LIBs), the MTMs demonstrate excellent performance. The influence of the pore size and an in situ carbon coating on charge transport and storage is examined, providing important insights for the optimization of structured titania anodes in LIBs. Our synthesis strategy presents a facile one-pot approach that can be applied to different structure-directing agents and inorganic materials, thus further extending its scope of application.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03155

DOI: 10.1021/acsami.7b03155

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.