5 years ago

Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems

Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems
Ruotian Chen, Can Li, Hongxian Han, Ailong Li, Zhen Li, Yuxing Xu
The influence of the electrostatic interaction on photocatalytic H2 evolution activity in cobaloxime/cadmium sulfide (CdS) hybrid systems was studied by measuring the charges of the cobaloximes and the zeta potentials of CdS under different pH conditions (pHs 4–7). Cobaloxime/CdS hybrid systems may have potential as a valid model for the investigation of the electrostatic interaction between a molecular catalyst and semiconductor because the kinetics of methanol oxidation and the driving force of electron transfer from photoirradiated CdS to cobaloxime have little effect on the pH-dependent photocatalytic H2 evolution activity. Our experimental results suggest that electrostatic repulsion between cobaloxime and CdS disfavors the electron transfer from CdS to cobaloxime and hence lowers the photocatalytic H2 evolution activity. Whereas, electrostatic attraction favors the electron transfer process and enhances the photocatalytic H2 evolution activity. However, an electrostatic attraction interaction that is too strong may accelerate both forward and backward electron transfer processes, which would reduce charge separation efficiency and lower photocatalytic H2 evolution activity.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06154

DOI: 10.1021/acsami.7b06154

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.