3 years ago

H2O Adsorption on WO3 and WO3–x (001) Surfaces

H2O Adsorption on WO3 and WO3–x (001) Surfaces
Elisa Albanese, Gianfranco Pacchioni, Cristiana Di Valentin
The nature of the interaction of water with the WO3 surface is of crucial importance for the use of this semiconductor oxide in photocatalysis. In this work, we investigate water adsorption and dissociation on both clean and O-deficient (001) WO3 surfaces by means of an accurate DFT approach. The O vacancy formation energy (computed with respect to O2) has been evaluated for all possible surface configurations, and the removal of the terminal O atom along the c axis is found to be preferred, costing about half the corresponding energy in the bulk. The presence of oxygen vacancies leads to a semiconductor to metal transition, confirming the experimental evidence of n-type conductivity in defective WO3 films. H2O preferably adsorbs on WO3 in a molecular undissociated form, due to the presence of W ions at the surface that act as Lewis acid sites. This interaction, about −1 eV per H2O molecule, is not very strong. Contrary to what is usually expected, the presence of oxygen vacancies does not significantly affect H2O adsorption. Finally, we investigated the H2O desorption from a hydroxylated surface. This suggests that the exposure of WO3 to H2 directly results in a hydroxylated surface and the corresponding H2O desorption turns out to be a very efficient mechanism to generate a reduced oxide surface, with important consequences on the electronic structure of this oxide.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06139

DOI: 10.1021/acsami.7b06139

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.