5 years ago

Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction

Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction
Kai Chi, Zheye Zhang, Yan Zhang, Jian Xiao, Shuai Wang, Feng Jing, Qiying Lv
Devising and facilely synthesizing an efficient noble metal-free electrocatalyst for the acceleration of the sluggish kinetics in the hydrogen-evolution reaction (HER) is still a big challenge for electrolytic water splitting. Herein, we present a simple one-step approach for constructing self-supported biocarbon-fiber cloth decorated with molybdenum carbide nanoparticles (BCF/Mo2C) electrodes by a direct annealing treatment of the Mo oxyanions loaded cotton T-shirt. The Mo2C nanoparticles not only serve as the catalytic active sites toward the HER but also enhance the hydrophilicity and conductivity of resultant electrodes. As an integrated three-dimensional HER cathode catalyst, the BCF/Mo2C exhibits outstanding electrocatalytic performance with extremely low overpotentials of 88 and 115 mV to drive a current density of 20 mA cm–2 in alkaline and acidic media, respectively. In addition, it can continuously work for 50 h with little decrease in the cathodic current density in both alkaline and acidic solutions. Even better, self-supported tungsten carbide and vanadium carbide based electrodes also can be prepared by a similar synthesis process. This work will illuminate an entirely new avenue for the preparation of various self-supported three-dimensional electrodes made of transition-metal carbides for various applications.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b06075

DOI: 10.1021/acsami.7b06075

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.