3 years ago

Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability

Low Work Function Lacunary Polyoxometalates as Electron Transport Interlayers for Inverted Polymer Solar Cells of Improved Efficiency and Stability
Theodoros A. Papadopoulos, Polycarpos Falaras, Florian Auras, Stella Kennou, Andreas Kaltzoglou, Yasemin Topal, George Papaioannou, Panagiotis Argitis, Mihalis Fakis, Anastasia Soultati, Dimitris Tsikritzis, Mahmut Kus, Kostas Seintis, Dimitris Davazoglou, Ermioni Polydorou, Matroni Koutsoureli, Leonidas C. Palilis, Marinos Tountas, Mustafa Ersöz, Maria Vasilopoulou, Apostolis Verykios
Effective interface engineering has been shown to play a vital role in facilitating efficient charge-carrier transport, thus boosting the performance of organic photovoltaic devices. Herein, we employ water-soluble lacunary polyoxometalates (POMs) as multifunctional interlayers between the titanium dioxide (TiO2) electron extraction/transport layer and the organic photoactive film to simultaneously enhance the efficiency, lifetime, and photostability of polymer solar cells (PSCs). A significant reduction in the work function (WF) of TiO2 upon POM utilization was observed, with the magnitude being controlled by the negative charge of the anion and the selection of the addenda atom (W or Mo). By inserting a POM interlayer with ∼10 nm thickness into the device structure, a significant improvement in the power conversion efficiency was obtained; the optimized POM-modified poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2- 33 ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]:[6,6]-phenyl-C70 butyric acid methyl ester (PTB7:PC70BM)-based PSCs exhibited an efficiency of 8.07%, which represents a 21% efficiency enhancement compared to the reference TiO2 cell. Similar results were obtained in POM-modified devices based on poly(3-hexylthiophene) (P3HT) with electron acceptors of different energy levels, such as PC70BM or indene-C60 bisadduct (IC60BA), which enhanced their efficiency up to 4.34 and 6.21%, respectively, when using POM interlayers; this represents a 25–33% improvement as compared to the reference cells. Moreover, increased lifetime under ambient air and improved photostability under constant illumination were observed in POM-modified devices. Detailed analysis shows that the improvements in efficiency and stability synergistically stem from the reduced work function of TiO2 upon POM coverage, the improved nanomorphology of the photoactive blend, the reduced interfacial recombination losses, the superior electron transfer, and the more effective exciton dissociation at the photoactive layer/POM/TiO2 interfaces.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b04600

DOI: 10.1021/acsami.7b04600

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.