5 years ago

High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes

High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes
Naoki Nakazawa, Zhenxiao Pan, Wei Wang, Xinhua Zhong, Qing Shen, Juan Yu, Wenran Wang, Guocan Jiang
Unambiguously direct adsorption (DA) of initial oil-soluble quantum dots (QDs) on TiO2 film electrode is a convenient and simple approach in the construction of quantum dot sensitized solar cells (QDSCs). Regrettably, low QD loading amount and poor reproducibility shadow the advantages of DA route and constrain its practical application. Herein, the influence of experimental variables in DA process on QD loading amount as well as on the photovoltaic performance of the resultant QDSCs was investigated and optimized systematically, including the choice of solvent, purification of QDs, and sensitization time, as well as QD concentration. Experimental results demonstrated that it is essential to choose appropriate solvent as well as control purification cycles of original QD suspensions so as to realize satisfactory QD loading amount and ensure the high reproducibility. In addition, DA mode renders efficient electron injection from QD to TiO2, yet low QD loading amount and adverse QD agglomeration in comparison with the well-developed capping ligand induced self-assembly (CLIS) deposition approach. Mg2+ treatment on TiO2 photoanodes can promote the QD loading amount in DA mode. The optimized QDSCs based on DA mode exhibited efficiencies of 6.90% and 9.02% for CdSe and Zn–Cu–In–Se QDSCs, respectively, which were comparable to the best results based on CLIS mode (6.88% and 9.56%, respectively).

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05598

DOI: 10.1021/acsami.7b05598

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.