5 years ago

Multiscale Shear-Lag Analysis of Stiffness Enhancement in Polymer–Graphene Nanocomposites

Multiscale Shear-Lag Analysis of Stiffness Enhancement in Polymer–Graphene Nanocomposites
Asanka Weerasinghe, Ashwin Ramasubramaniam, Dimitrios Maroudas, Chang-Tsan Lu
Graphene and other two-dimensional (2D) materials are of emerging interest as functional fillers in polymer–matrix composites. In this study, we present a multiscale atomistic-to-continuum approach for modeling interfacial stress transfer in graphene–high-density polyethylene (HDPE) nanocomposites. Via detailed characterization of atomic-level stress profiles in submicron graphene fillers, we develop a modified shear-lag model for short fillers. A key feature of our approach lies in the correct accounting of stress concentration at the ends of fillers that exhibits a power-law dependence on filler (“flaw”) size, determined explicitly from atomistic simulations, without any ad hoc modeling assumptions. In addition to two parameters that quantify the end stress concentration, only one additional shear-lag parameter is required to quantify the atomic-level stress profiles in graphene fillers. This three-parameter model is found to be reliable for fillers with dimensions as small as ∼10 nm. Our model predicts accurately the elastic response of aligned graphene–HDPE composites and provides appropriate upper bounds for the elastic moduli of nanocomposites with more realistic randomly distributed and oriented fillers. This study provides a systematic approach for developing hierarchical multiscale models of 2D material-based nanocomposites and is of particular relevance for short fillers, which are, currently, typical of solution-processed 2D materials.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03159

DOI: 10.1021/acsami.7b03159

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.