3 years ago

A record of aerobic methane oxidation in tropical Africa over the last 2.5Ma

Methane and CO2 are climatically active greenhouse gases (GHG) and are powerful drivers of rapid global warming. Comparable to the Arctic, the tropics store large volumes of labile sedimentary carbon that is vulnerable to climate change. However, little is known about this labile carbon reservoir, in particular the behaviour of high methane–producing environments (e.g. wetlands), and their role in driving or responding to past periods of global climate change. In this study, we use a microbial biomarker approach that traces continental aerobic methane oxidation (AMO) from sedimentary organic matter in deep-sea fan sediments off the Congo River to reconstruct the link between central African methane cycling and continental export during key periods of global Pleistocene warmth. We use 35-amino bacteriohopanepolyols (BHPs), specifically aminobacteriohopane-31,32,33,34-tetrol (aminotetrol) and 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) as diagnostic molecular markers for AMO (CH4 oxidation markers) and the prevalence of continental wetland environments. BHPs were analysed in sediments from the Congo fan (ODP 1075) dated to 2.5Ma. High resolution studies of key warm marine isotope stages (MIS) 5, 11 and 13 are included to test the relationship between CH4 oxidation markers in sediments at different levels of elevated global atmospheric GHG. This study presents the oldest reported occurrence, to date, of 35-amino BHPs up to 200m below sea floor (∼2.5Ma) with no strong degradation signature observed. Low concentrations of CH4 oxidation markers identified between 1.7Ma and 1Ma suggest a reduction in wetland extent in tropical Africa in response to more arid environmental conditions. Correlation of high resolution CH4 oxidation marker signatures with global atmospheric GHG concentrations during MIS 5, 11 and 13 further emphasize periods of enhanced tropical C cycling. However, subsequent analysis would be required to further extrapolate the relative importance of tropical methane sources asa driver of global methane concentrations during the Pleistocene.

Publisher URL: www.sciencedirect.com/science

DOI: S0016703717305458

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.