3 years ago

Petrogenesis of a Mesoproterozoic shoshonitic lamprophyre dyke from the Wajrakarur kimberlite field, eastern Dharwar craton, southern India: Geochemical and Sr-Nd isotopic evidence for a modified sub-continental lithospheric mantle source

Mineralogy and geochemistry of the Udirpikonda lamprophyre, located within the Mesoproterozoic diamondiferous Wajrakarur kimberlite field (WKF), towards the western margin of the Paleo-Mesoproterozoic Cuddapah basin are presented. The lamprophyre is characterised by a panidiomorphic-porphyritic texture imparted by clinopyroxene, olivine and biotite set in a groundmass of feldspar and spinel. Olivine occurs as the microphenocrysts with a composition range of Fo87–78. Clinopyroxenes display reverse as well as oscillatory optical zoning and are diopsidic in nature with a variation in the composition from core (Wo47 En28 Fs20Ac5) to rim (Wo46En41Fs11Ac3). Biotite (Mg #<0.6) is the only mica present and spinels are titano-magnetites showing ulvospinel- magnetite solid solution. Plagioclase is the dominant feldspar with a variable compositional range of An41-8Ab82-56Or33–3. Based on the mineralogy, the lamprophyre can be classified to be of calc-alkaline variety but its geochemistry display mixed signals of both alkaline and calc-alkaline lamprophyres. K2O/Na2O ranges from 1.49–2.79, making it distinctly potassic and highlights its shoshonitic character. Moderate Mg# (60–65), Ni (110–200ppm) and Cr (110–260ppm) contents in the bulk-rock indicate substantial fractional crystallization of olivine and clinopyroxene. Fractionated chondrite normalized REE patterns (average (La/Yb)N =37.56) indicates involvement of an enriched mantle source from within the garnet stability field whereas slightly negative Ta-Nb-Ti and Hf anomalies displayed on the primitive mantle normalized multi-element spidergram highlight involvement of a subducted component in the mantle source. Given the spatial disposition of the studied lamprophyre, the age of the emplacement is considered to be coeval with WKF kimberlites (~1.1Ga) and the initial 143Nd/144Nd (0.510065–0.510192) and 87Sr/86Sr (0.705333–0.706223) are strikingly similar to those observed for the Smoky Butte lamproites, Montana, USA. Fluid-related subduction enrichment of the mantle source is apparent from the enriched ratios of La/Nb, Ba/Nb and (Hf/Sm)N, (Ta/La)N <1. Petrogenetic modelling reveals melt generation from 1 to 2% partial melting of an enriched mantle source that subsequently underwent fractional crystallization. Our study provides geochemical and isotopic evidence for a sub-continental lithospheric mantle (SCLM) modified by subduction and asthenospheric upwelling in the Eastern Dharwar Craton. The partial melting of a resulting heterogeneous Eastern Dharwar Craton SCLM to generate Udiripikonda lamprophyre and Wajrakarur kimberlites has been attributed to the Mesoproterozoic regional lithospheric extension event.

Publisher URL: www.sciencedirect.com/science

DOI: S0024493717303018

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.