5 years ago

A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery

A High Capacity, Good Safety and Low Cost Na2FeSiO4-Based Cathode for Rechargeable Sodium-Ion Battery
Peng Zhou, Jinxiao Mi, Bin Pan, Jiacheng Xu, Dan Zhang, Yinzhu Jiang, Wenhao Guan
Rechargeable sodium-ion batteries (SIBs) are receiving intense interest because the resource abundance of sodium and its lithium-like chemistry make them low cost alternatives to the prevailing lithium-ion batteries in large-scale energy storage devices. Two typical classes of materials including transition metal oxides and polyanion compounds have been under intensive investigation as cathodes for SIBs; however, they are still limited to poor stability or low capacity of the state-of-art. Herein, we report a low cost carbon-coated Na2FeSiO4 with simultaneous high capacity and good stability, owing to the highly pure Na-rich triclinic phase and the carbon-incorporated three-dimensional network morphology. The present carbon-coated Na2FeSiO4 demonstrates the highest reversible capacity of 181.0 mAh g–1 to date with multielectron redox reaction that occurred among various polyanion-based SIBs cathodes, which achieves a close-to-100% initial Coulombic efficiency and a stable cycling with 88% capacity retention up to 100 cycles. In addition, such an electrode shows excellent stability either charged at a high voltage of 4.5 V or heated up to 800 °C. The present work might open up the possibility for developing high capacity, good safety and low cost polyanion-based cathodes for rechargeable SIBs.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b02385

DOI: 10.1021/acsami.7b02385

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.