4 years ago

Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors

Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors
Jianguo Guan, Yirong Gao, Leilei Xu, Wei Li, Shengping Che, Yizheng Feng, Fangzhi Mou
In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO2/Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO2/Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b05794

DOI: 10.1021/acsami.7b05794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.