5 years ago

Monolayer Bismuthene-Metal Contacts: A Theoretical Study

Monolayer Bismuthene-Metal Contacts: A Theoretical Study
Yuanyuan Pan, Ying Guo, Meng Ye, Xiuying Zhang, Jinbo Yang, Yangyang Wang, Feng Pan, Zhigang Song, Xiaotian Sun, Jing Lu, Jingzhen Li, Han Zhang
Bismuthene, a bismuth analogue of graphene, has a moderate band gap, has a high carrier mobility, has a topological nontriviality, has a high stability at room temperature, has an easy transferability, and is very attractive for electronics, optronics, and spintronics. The electrical contact plays a critical role in an actual device. The interfacial properties of monolayer (ML) bismuthene in contact with the metal electrodes spanning a wide work function range in a field-effect transistor configuration are systematically studied for the first time by using both first-principles electronic structure calculations and quantum transport simulations. The ML bismuthene always undergoes metallization upon contact with the six metal electrodes owing to a strong interaction. According to the quantum transport simulations, apparent metal-induced gap states (MIGSs) formed in the semiconductor–metal interface give rise to a strong Fermi-level pinning. As a result, the ML bismuthene forms an n-type Schottky contact with Ir/Ag/Ti electrodes with electron Schottky barrier heights (SBHs) of 0.17, 0.22, and 0.25 eV, respectively, and a p-type Schottky contact with Pt/Al/Au electrodes with hole SBHs of 0.09, 0.16, and 0.38 eV, respectively. The effective channel length of the ML bismuthene transistors is also significantly reduced by the MIGSs. However, the MIGSs are eliminated and the effective channel length is increased when ML graphene is used as an electrode, accompanied by a small hole SBH of 0.06 eV (quasi-Ohmic contact). Hence, an insight is provided into the interfacial properties of the ML bismuthene–metal composite systems and a guidance is provided for the choice of metal electrodes in ML bismuthene devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b03833

DOI: 10.1021/acsami.7b03833

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.