3 years ago

Hydrochemistry and controlling mechanism of lakes in permafrost regions along the Qinghai-Tibet Engineering Corridor, China

Hydrochemistry and controlling mechanism of lakes in permafrost regions along the Qinghai-Tibet Engineering Corridor, China
Lakes are the main water resource for migrating animals and herdsmen in permafrost regions along the Qinghai-Tibet Engineering Corridor (QTEC) and play a crucial role in regulating the balance between regional surface water and groundwater. Hydrochemical properties also affect the soil environment, ecological conditions, and hydrological cycle. In this study, 127 water samples were collected from lakes to analyze hydrochemistry characteristics. The results are discussed in the context of relationships between water chemistry and local conditions including climate, topography, and geology. The results showed that 43.3% of lakes are fresh, 19.7% are brackish, 18.9% are saline, 17.3% are brine, and only 0.8% are bitter. The dominant cation is Na+, followed by Mg2+, Ca2+, and K+. The dominant anion is Cl, followed by SO4 2 and HCO3 in the northern section of study region; whereas Ca2+, Na+, and HCO3 are the dominant ions in the lakes of the southern section. The higher concentrations of carbonate in the southern lakes reflect contributions from groundwater discharge. In contrast, the higher concentrations of sodium, chloride, and sulfate in the northern section indicate that they are dominated by the interaction of evaporates. Additionally, cation exchange, precipitation, and dissolution have also modified the distribution of hydrochemical compositions. Thermokarst processes, in particular, have induced changes in the hydrochemistry of lake waters in the permafrost regions of the QTEC, in that the ion concentrations are closely related to ground ice content. In the context of persistent climatic warming and steadily increasing anthropogenic activities, the salinity of lakes along the QTEC is likely to increase in the future.

Publisher URL: www.sciencedirect.com/science

DOI: S0169555X17303987

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.