5 years ago

Applying Capacitive Energy Storage for In Situ Manipulation of Magnetization in Ordered Mesoporous Perovskite-Type LSMO Thin Films

Applying Capacitive Energy Storage for In Situ Manipulation of Magnetization in Ordered Mesoporous Perovskite-Type LSMO Thin Films
Thomas Leichtweiss, Christian Reitz, Torsten Brezesinski, Di Wang, Horst Hahn, Andre Beck, Daniela Stoeckel
Mesostructured nonsilicate materials, particularly mixed-metal oxides, are receiving much attention in recent years because of their potential for numerous applications. Via the polymer-templating method, perovskite-type lanthanum strontium manganese oxide (La1–xSrxMnO3, LSMO, with x ≈ 0.15 to 0.30) with a continuous 3D cubic network of 23 nm pores is prepared in thin-film form for the first time. Characterization results from grazing incidence X-ray scattering, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and electron microscopy and tomography show that the dip-coated sol–gel-derived films are of high quality in terms of both composition and morphology and that they are stable to over 700 °C. Magnetic and magnetotransport measurements demonstrate that the material with the highest strontium concentration is ferromagnetic at room temperature and exhibits metallic resistivity behavior below 270 K. Besides, it behaves differently from epitaxial layers (e.g., enhanced low-field magnetoresistance effect). It is also shown that carriers (electrons and holes) can be induced into the polymer-templated mesostructured LSMO films via capacitive double-layer charging. This kind of electrostatic doping utilizing ionic liquid gating causes large relative changes in magnetic susceptibility at room temperature and is a viable technique to tune the magnetic phase diagram in situ.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b01978

DOI: 10.1021/acsami.7b01978

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.