4 years ago

Anomalous Structural Disorder in Supported Pt Nanoparticles

Anomalous Structural Disorder in Supported Pt Nanoparticles
Anatoly I. Frenkel, Fernando D. Vila, John J. Rehr, Ralph G. Nuzzo
Supported Pt nanocatalysts generally exhibit anomalous behavior, including negative thermal expansion and large structural disorder. Finite temperature DFT/MD simulations reproduce these properties, showing that they are largely explained by a combination of thermal vibrations and low-frequency disorder. We show here that a full interpretation is more complex and that the DFT/MD mean-square relative displacements (MSRD) can be further separated into vibrational disorder, “dynamic structural disorder” (DSD), and long-time equilibrium fluctuations of the structure dubbed “anomalous structural disorder” (ASD). We find that the vibrational and DSD components behave normally, increasing linearly with temperature while the ASD decreases, reflecting the evolution of mean nanoparticle geometry. As a consequence the usual procedure of fitting the MSRD to normal vibrations plus temperature-independent static disorder results in unphysical bond strengths and Grüneisen parameters.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01446

DOI: 10.1021/acs.jpclett.7b01446

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.