5 years ago

Structural Basis for Aza-Glycine Stabilization of Collagen

Structural Basis for Aza-Glycine Stabilization of Collagen
David M. Chenoweth, Yitao Zhang, Yang Hai, Alexander J. Kasznel
Previously, we have demonstrated that replacement of the strictly conserved glycine in collagen with aza-glycine provides a general solution for stabilizing triple helical collagen peptides.1,2 The additional hydrogen bond and conformational constraints provided by aza-glycine increases the thermal stability and rate of folding in collagen peptides composed of Pro-Hyp-Gly triplet repeats, allowing for truncation to the smallest self-assembling peptide systems observed to date. Here we show that aza-glycine substitution enhances the stability of an arginine-containing collagen peptide and provide a structural basis for this stabilization with an atomic resolution crystal structure. These results demonstrate that a single nitrogen atom substitution for a glycine alpha-carbon increases the peptide’s triple helix melting temperature by 8.6 °C. Furthermore, we provide the first structural basis for stabilization of triple helical collagen peptides containing aza-glycine and we demonstrate that minimal alteration to the peptide backbone conformation occurs with aza-glycine incorporation.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b03398

DOI: 10.1021/jacs.7b03398

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.