5 years ago

Quantum Interference in Singlet Fission: J- and H-Aggregate Behavior

Quantum Interference in Singlet Fission: J- and H-Aggregate Behavior
WanZhen Liang, Yi Zhao, Hang Zang
The quantum interference in singlet fission (SF) among the multiple pathways from singlet excited states to correlated triplet pair states is comprehensively investigated. The analytical analysis reveals that this interference is strongly affected by the exciton–exciton coupling and is closely related to the property of J- and H-type of aggregates. Different from the interference in the spectra of aggregates, which depends only on the sign of exciton–exciton coupling, the interference in SF is additionally related to the signs of couplings between singlet excited states and triplet pair states. The interference dynamics is further demonstrated numerically by a time-dependent wavepacket diffusion method with electron–phonon interactions incorporated. Finally, we take a pentacene dimer as a concrete example to show how to adjust the constructive and destructive interferences in SF dynamics in terms of J-/H-aggregate behaviors. The results presented here may provide guiding principles for designing efficient SF materials through directly tuning quantum interference via morphology engineering.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01996

DOI: 10.1021/acs.jpclett.7b01996

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.