5 years ago

Non-Feynman Deterministic Pulsing Ratchet Based on a Symmetric Periodic Potential with Harmonic Time Modulation

Non-Feynman Deterministic Pulsing Ratchet Based on a Symmetric Periodic Potential with Harmonic Time Modulation
Semen Semenov, Martin Schimpf
The deterministic mechanism of directed particle motion in a symmetric periodic potential with harmonic time modulation is theoretically examined. We show that directed particle motion can be established with a symmetric potential in the absence of thermal motion, provided the spatial particle shift is synchronized with the period of temporal change in the potential and the characteristic time required for the particle to pass through the interval between neighboring extremes in potential is equal to the half-period of the time modulation. Ratchet behavior is demonstrated using a simple symmetric force potential consisting of a square wave with opposite but equal amplitude regions. By establishing spatiotemporal synchronization between the particle shift in space and the time modulation, nonreversible directed particle motion is provided by inertia that is maintained as the potential profile approaches zero in the time modulation process.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06050

DOI: 10.1021/acs.jpcc.7b06050

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.