3 years ago

Dendrons and Multiarm Polymers with Thiol-Exchangeable Cores: A Reversible Conjugation Platform for Delivery

Dendrons and Multiarm Polymers with Thiol-Exchangeable Cores: A Reversible Conjugation Platform for Delivery
Burcu Sumer Bolu, Rana Sanyal, Ozgul Gok, Amitav Sanyal, Tugce Nihal Gevrek, Pelin Erturk
Disulfide exchange reaction has emerged as a powerful tool for reversible conjugation of proteins, peptides and thiol containing molecules to polymeric supports. In particular, the pyridyl disulfide group provides an efficient handle for the site-specific conjugation of therapeutic peptides and proteins bearing cysteine moieties. In this study, novel biodegradable dendritic platforms containing a pyridyl disulfide unit at their focal point were designed. Presence of hydroxyl groups at the periphery of these dendrons allows their elaboration to multivalent initiators that yield poly(ethylene glycol) based multiarm star polymers via controlled radical polymerization. The pyridyl disulfide unit at the core of these star polymers undergoes efficient reaction with thiol functional group containing molecules such as a hydrophobic dye, namely, Bodipy-SH, glutathione, and KLAK sequence containing peptide. While conjugation of the hydrophobic fluorescent dye to the PEG-based multiarm polymer renders it water-soluble, it can be cleaved off the construct through thiol–disulfide exchange in the presence of an external thiol such as dithiothreitol. The multiarm polymer was conjugated with a thiol group containing apoptotic peptide to increase its solubility and cellular transport. In vitro cytotoxicity and apoptosis assays demonstrated that the resultant peptide–polymer conjugate had almost five times more apoptotic potential primarily through triggering apoptosis by disrupting mitochondrial membranes of human breast cancer cell line (MDA-MB-231) compared to naked peptide. The novel dendritic platform disclosed here offers an attractive template that can be modified to multiarm polymeric constructs bearing a “tag and release” characteristic.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00619

DOI: 10.1021/acs.biomac.7b00619

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.