5 years ago

Computational Synthesis of MoS2 Layers by Reactive Molecular Dynamics Simulations: Initial Sulfidation of MoO3 Surfaces

Computational Synthesis of MoS2 Layers by Reactive Molecular Dynamics Simulations: Initial Sulfidation of MoO3 Surfaces
Fuyuki Shimojo, Pankaj Rajak, Rajiv K. Kalia, Masaaki Misawa, Priya Vashishta, Aiichiro Nakano, Subodh Tiwari, Sungwook Hong, Aravind Krishnamoorthy
Transition metal dichalcogenides (TMDC) like MoS2 are promising candidates for next-generation electric and optoelectronic devices. These TMDC monolayers are typically synthesized by chemical vapor deposition (CVD). However, despite significant amount of empirical work on this CVD growth of monolayered crystals, neither experiment nor theory has been able to decipher mechanisms of selection rules for different growth scenarios, or make predictions of optimized environmental parameters and growth factors. Here, we present an atomic-scale mechanistic analysis of the initial sulfidation process on MoO3 surfaces using first-principles-informed ReaxFF reactive molecular dynamics (RMD) simulations. We identify a three-step reaction process associated with synthesis of the MoS2 samples from MoO3 and S2 precursors: O2 evolution and self-reduction of the MoO3 surface; SO/SO2 formation and S2-assisted reduction; and sulfidation of the reduced surface and Mo–S bond formation. These atomic processes occurring during early stage MoS2 synthesis, which are consistent with experimental observations and existing theoretical literature, provide valuable input for guided rational synthesis of MoS2 and other TMDC crystals by the CVD process.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b01727

DOI: 10.1021/acs.nanolett.7b01727

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.