5 years ago

Inhibitory Effects of 3,4-Dimethylpyrazole Phosphate on CH4 and N2O Emissions in Paddy Fields of Subtropical China.

Yin, Liu, Li, Zhu, Jiang, Zhang
3,4-Dimethylpyrazole phosphate (DMPP) has been widely employed to reduce nitrogen leaching and greenhouse gas emissions in the soils of dry farmlands. However, the effects of DMPP on the dynamics of nitrogen in paddy fields remain unclear. For this study, treatments with 0%, 0.25%, 0.5%, 1%, or 1.5% DMPP levels of nitrogen fertilization plus urea were designed to determine the effects on greenhouse gas emissions in paddy fields of subtropical China. All DMPP treatments significantly reduced CH4 and N2O emissions, from 54% to 34%, and 94% to 39%, respectively, compared with a urea fertilizer treatment alone. The soil NH4+ content decreased and NO3- increased more slowly with the application of DMPP. The crop yields under the various DMPP treatments showed no significant difference (p < 0.05). We concluded that the application of 0.5% and 1% DMPP may significantly reduce CH4 and N2O emissions in contrast to other treatments. This has important implications for the maintenance of rice yields, while reducing greenhouse gas emissions in paddy fields.

Publisher URL: http://doi.org/10.3390/ijerph14101177

DOI: 10.3390/ijerph14101177

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.