3 years ago

PARP1 controls KLF4-mediated telomerase expression in stem cells and cancer cells.

Wang, Lu, Lee, Hsieh, Chen, Teng, Yu, Ho, Chien
Telomerase is highly expressed in cancer and embryonic stem cells (ESCs) and implicated in controlling genome integrity, cancer formation and stemness. Previous studies identified that Krüppel-like transcription factor 4 (KLF4) activates telomerase reverse transcriptase (TERT) expression and contributes to the maintenance of self-renewal in ESCs. However, little is known about how KLF4 regulates TERT expression. Here, we discover poly(ADP-ribose) polymerase 1 (PARP1) as a novel KLF4-interacting partner. Knockdown of PARP1 reduces TERT expression and telomerase activity not only in cancer cells, but also in human and mouse ESCs. Recruitment of KLF4 to TERT promoter is reduced in PARP1-suppressed cells. The poly(ADP-ribose) polymerase activity is dispensable, while the oligo(ADP-ribose) polymerase activity is required for the PARP1- and KLF4-mediated TERT activation. Repression of Parp1 in mouse ESCs decreases expression of pluripotent markers and induces differentiation. These results suggest that PARP1 recruits KLF4 to activate telomerase expression and stem cell pluripotency, indicating a positive regulatory role of the PARP1-KLF4 complex in telomerase expression in cancer and stem cells.

Publisher URL: http://doi.org/10.1093/nar/gkx683

DOI: 10.1093/nar/gkx683

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.