3 years ago

The importance of phenotypic plasticity and local adaptation in driving intraspecific variability in thermal niches of marine macrophytes

Dan A Smale, Nathan G King, Pippa J Moore, Niall J McKeown
Climate change is driving the redistribution of species at a global scale and documenting and predicting species’ responses to warming is a principal focus of contemporary ecology. When interpreting and predicting their responses to warming, species are generally treated as single homogenous physiological units. However, local adaptation and phenotypic plasticity can result in intraspecific differences in thermal niche. Therefore, population loss may also not only occur from trailing edges. In species with low dispersal capacity this will have profound impacts for the species as a whole, as local population loss will not be offset by immigration of warm tolerant individuals. Recent evidence from terrestrial forests has shown that incorporation of intraspecific variation in thermal niche is vital to accurately predicting species responses to warming. However, marine macrophytes (i.e. seagrasses and seaweeds) that form some of the world's most productive and diverse ecosystems have not been examined in the same context. We conducted a literature review to determine how common intraspecific variation in thermal physiology is in marine macrophytes. We find that 90% of studies identified (n = 42) found clear differences in thermal niche between geographically separated populations. Therefore, non-trailing edge populations may also be vulnerable to future warming trends and given their limited dispersal capacity, such population loss may not be offset by immigration. We also explore how Next Generation Sequencing (NGS) is allowing unprecedented mechanistic insight into plasticity and adaptation. We conclude that in the ‘genomic era’ it may be possible to link understanding of plasticity and adaptation at the genetic level through to changes in populations providing novel insights on the redistribution of populations under future climate change. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/ecog.03186

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.