5 years ago

Decoupling the direct and indirect effects of climate on plant litter decomposition and terrestrial nutrient cycling

Vidya Suseela, Nishanth Tharayil
Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a post-senescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final composition of plant litter that forms the substrate of decomposition is a combined product of pre-senescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition and localization of the molecular construct of the litter could influence tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities and the activity of microbial exo-enzymes via various complexation reactions. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/gcb.13923

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.