4 years ago

Effect of Off-Diagonal Exciton–Phonon Coupling on Intramolecular Singlet Fission

Effect of Off-Diagonal Exciton–Phonon Coupling on Intramolecular Singlet Fission
Yang Zhao, Zhongkai Huang, Yuta Fujihashi
Intramolecular singlet fission (iSF) materials provide remarkable advantages in terms of tunable electronic structures, and quantum chemistry studies have indicated strong electronic coupling modulation by high frequency phonon modes. In this work, we formulate a microscopic model of iSF with simultaneous diagonal and off-diagonal coupling to high-frequency modes. A nonperturbative treatment, the Dirac-Frenkel time-dependent variational approach is adopted using the multiple Davydov trial states. It is shown that both diagonal and off-diagonal coupling can aid efficient singlet fission if excitonic coupling is weak, and fission is only facilitated by diagonal coupling if excitonic coupling is strong. In the presence of off-diagonal coupling, it is found that high frequency modes create additional fission channels for rapid iSF. Results presented here may help provide guiding principles for design of efficient singlet fission materials by directly tuning singlet–triplet interstate coupling.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01247

DOI: 10.1021/acs.jpclett.7b01247

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.