3 years ago

Modeling of transport processes through large-scale discrete fracture networks using conforming meshes and open-source software

Most industrial and field studies of transport processes in Discrete Fracture Networks (DFNs) involve strong simplifying assumptions, especially at the meshing stage. High-accuracy simulations are therefore required for validating these simplified models and their domain of validity. The present paper proposes an efficient workflow based on open-source software to obtain transport simulations. High-quality computational meshes for DFNs are first generated using the conforming meshing approach FraC. Then, a tracer transport model implemented in the open-source code DuMux is used for simulating tracer transport driven by the advection-dispersion equation. We adopt the box method, a vertex-centered finite volume scheme for spatial discretization, which ensures concentration continuity and mass conservation at intersections between fractures. Numerical results on simple networks for validation purposes and on complex realistic DFNs are presented. An a-posteriori convergence study of the discretization method shows an order of convergence O(h) for tracer concentration with h the mesh size.

Publisher URL: www.sciencedirect.com/science

DOI: S0022169417305899

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.