3 years ago

Palladium-Catalyzed Cascade sp2 C−H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3-Dienes to Chiral Indolines

Palladium-Catalyzed Cascade sp2 C−H Functionalization/Intramolecular Asymmetric Allylation: From Aryl Ureas and 1,3-Dienes to Chiral Indolines
Zhi-Yong Han, Shu-Sen Chen, Min-Song Wu
A chiral PdII-catalyzed cascade sp2 C−H functionalization/intramolecular asymmetric allylation reaction is reported. A new chiral sulfoxide–oxazoline (SOX) ligand bearing single chiral center on the sulfur was identified as the optimal ligand for the reaction, being efficient both in the C−H cleavage step and the stereocontrol of the allylation step. The broad scope of this method with respect to aryl ureas and 1,3-dienes enables the rapid construction of valuable chiral indoline derivatives with high yields and enantioselectivities (up to 99 % yield, up to 95:5 e.r.). Efficiency and chirality: A chiral PdII-catalyzed cascade sp2 C−H functionalization/intramolecular asymmetric allylation reaction is described. A chiral sulfoxide–oxazoline (SOX) ligand bearing single chiral center on the sulfur was identified as the optimal ligand for the reaction, being efficient both in the C−H cleavage step and the stereo-control of the allylation step.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201702745

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.