5 years ago

Molecular characterization of Pseudo-nitzschia community structure and species ecology in a hydrographically complex estuarine system (Puget Sound, Washington, USA).

Hubbard, Armbrust, Olson
Species within the toxic marine diatom genus Pseudo-nitzschia coexist in coastal and estuarine waters globally and are difficult to distinguish by microscopy. Here, we describe a sensitive, high throughput PCR-based Automated Ribosomal Intergenic Spacer Analysis (ARISA) approach to determine the relative abundance of Pseudo-nitzschia species within natural communities over space and time. The method was quantitatively validated using simplified mixtures of DNA or ITS1 standards from isolates of P. pungens, P. multiseries, and P. delicatissima. Relative abundance calculations based on ARISA profiles from these mixtures reflected input ratios, with minor deviations resulting from intraspecific variability. ARISA was used to identify and quantify at least eight species within Puget Sound and the eastern Strait of Juan de Fuca, Washington, USA: P. americana, P. australis/P. seriata, P. cuspidata, P. delicatissima, P. fraudulenta, P. fryxelliana, P. multiseries, and P. pungens; genotypes corresponding to P. pungens var. pungens and P. pungens var. cingulata were identified by environmental sequencing. The different species were significantly correlated with physical (temperature, salinity), biological (chlorophyll a fluorescence, oxygen), and/or chemical (ammonium, nutrient ratios) factors. The ability to determine shifts in the relative abundance of Pseudo-nitzschia species over spatial and temporal scales relevant to dispersion and selection facilitates dissection of the varied mechanisms driving vertical and horizontal species distribution patterns in hydrographically complex systems.

Publisher URL: http://doi.org/10.3354/meps10820

DOI: 10.3354/meps10820

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.