5 years ago

Three-Dimensional Plasmonic Nanostructure Design for Boosting Photoelectrochemical Activity

Three-Dimensional Plasmonic Nanostructure Design for Boosting Photoelectrochemical Activity
Zhijie Wang, Max Sommerfeld, Yang Xu, Shipu Xu, Rui Xu, Yaoguo Fang, Yong Lei, Yan Mi, Huaping Zhao, Liaoyong Wen
Plasmonic nanostructures have been widely incorporated into different semiconductor materials to improve solar energy conversion. An important point is how to manipulate the incident light so that more light can be efficiently scattered and absorbed within the semiconductors. Here, by using a tunable three-dimensional Au pillar/truncated-pyramid (PTP) array as a plasmonic coupler, a superior optical absorption of about 95% within a wide wavelength range is demonstrated from an assembled CdS/Au PTP photoanode. Based on incident photon to current efficiency measurements and the corresponding finite difference time domain simulations, it is concluded that the enhancement is mainly attributed to an appropriate spectral complementation between surface plasmon resonance modes and photonic modes in the Au PTP structure over the operational spectrum. Because both of them are wavelength-dependent, the Au PTP profile and CdS thickness are further adjusted to take full advantage of the complementary effect, and subsequently, an angle-independent photocurrent with an enhancement of about 400% was obtained. The designed plasmonic PTP nanostructure of Au is highly robust, and it could be easily extended to other plasmonic metals equipped with semiconductor thin films for photovoltaic and photoelectrochemical cells.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b03633

DOI: 10.1021/acsnano.7b03633

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.