5 years ago

Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles

Predicted Structures of the Active Sites Responsible for the Improved Reduction of Carbon Dioxide by Gold Nanoparticles
Tao Cheng, Yufeng Huang, Hai Xiao, William A. Goddard
Gold (Au) nanoparticles (NPs) are known experimentally to reduce carbon dioxide (CO2) to carbon monoxide (CO), with far superior performance to Au foils. To obtain guidance in designing improved CO2 catalysts, we want to understand the nature of the active sites on Au NPs. Here, we employed multiscale atomistic simulations to computationally synthesize and characterize a 10 nm thick Au NP on a carbon nanotube (CNT) support, and then we located active sites from quantum mechanics (QM) calculations on 269 randomly selected sites. The standard scaling relation is that the formation energy of *COOH (ΔE*COOH) is proportional to the binding energy of *CO (Ebinding*CO); therefore, decreasing ΔE*COOH to boost the CO2 reduction reaction (CO2RR) causes an increase of Ebinding*CO that retards CO2RR. We show that the NPs have superior CO2RR because there are many sites at the twin boundaries that significantly break this scaling relation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01335

DOI: 10.1021/acs.jpclett.7b01335

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.