5 years ago

Priming effect of benthic gastropod mucus on sedimentary organic matter remineralization.

Hannides, Aller
Mucous gels are produced by benthic animals rapidly and in copious amounts, and consequently they are a possible priming substrate whose addition in modest amounts may affect sedimentary organic matter (SOM) remineralization. The priming effect of benthic infaunal mucus was tested using mucus of the common gastropod Neverita duplicata as model substrate. Its composition is typical of marine molluscan mucus, consisting primarily of water (>96% by weight). Salt-free dry weight constitutes 0.7% of total mucus. Relationships between C, N and S content show the presence of N-free and S-free fractions, indicative of mucopolysaccharides, that account for approximately half of the total C present. The C/N ratios of the N-containing fraction (6.1 and 8.75 for pedal and hypobranchial mucus, respectively) are indicative of a carbohydrate-protein complex. Relatively low C/S ratios for the S-containing fraction (21.8 and 10.5 for pedal and hypobranchial mucus, respectively) and positive staining with Alcian Blue dye are indicative of S-ester and alkyl-SO4(2-) groups bridging mucopolysaccharide and glycoprotein components. Anaerobic incubations of pedal mucus, sediment and mucus-sediment mixture resulted in the generation of ΣCO2 and NH4(+) at ratios lower than substrate C/N ratios, indicating the preferential decomposition of N-rich components. Production rates of ΣCO2 and NH4(+) in mucus-sediment incubations are higher, by 9±16% and 29±11%, respectively, than those predicted from linear addition of mucus-only and sediment-only rates. The accelerated remineralization rate of N in the presence of modest mucus contribution suggests that benthic mucus addition can affect SOM remineralization processes through a "priming" effect.

Publisher URL: http://doi.org/10.1002/lno.10325

DOI: 10.1002/lno.10325

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.