3 years ago

Distribution of alkaline phosphatase genes in cyanobacteria and the role of alkaline phosphatase on the acquisition of phosphorus from dissolved organic phosphorus for cyanobacterial growth

Dandan Zhao, Weitie Lin, Jianfei Luo


Phosphorus is a vital nutrient for cyanobacterial growth. Aside from dissolved inorganic phosphorus, dissolved organic phosphorus (DOP) is used by cyanobacterial species via the activity of alkaline phosphatase (APase), which likely plays an important role in acquiring phosphorus for algal growth in the same manner as it does in other bacteria. In this work, APase genes phoA, phoD, and phoX were found distributed in the cyanobacterial strains included in the algal genome collection of the NCBI database. PhoX has a wider distribution than the classical phoA and phoD. Furthermore, multiple types of APase genes were simultaneously identified in a single strain or genome. Anabaena flos-aquae FACHB-245 was selected as a typical strain to study the performance of cyanobacteria growing on DOP. In algal growth involving AMP or lecithin, APase regulates the release of phosphorus from DOP as confirmed by the relative quantification of phoD and phoX expression levels. Our results confirmed that the distribution of APase is prevalent in cyanobacteria and thus provides a new insight into the potential role of cyanobacterial APase on phosphorus acquisition in natural environment.

Publisher URL: https://link.springer.com/article/10.1007/s10811-017-1267-3

DOI: 10.1007/s10811-017-1267-3

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.