5 years ago

Surface-Enhanced Raman Spectroscopy and Density Functional Theory Calculations of a Rationally Designed Rhodamine with Thiol Groups at the Xanthene Ring

Surface-Enhanced Raman Spectroscopy and Density Functional Theory Calculations of a Rationally Designed Rhodamine with Thiol Groups at the Xanthene Ring
Sebastian Schlücker, Svetlana Brem
Rhodamines are widely used dyes in fluorescence and surface-enhanced Raman spectroscopy (SERS). The latter requires adsorption of the dye onto the surface of plasmonic nanostructures, a process which requires attractive molecule–surface interactions. Here, we report an experimental SERS and computational density functional theory (DFT) study investigating the role of thiol functionalization at the xanthene ring of the rhodamine in the adsorption onto gold nanoparticles. For this purpose, a new bisthiolated rhodamine derivative was rationally designed and synthesized via a PPh3/I2 reduction route. The introduction of two thiol moieties directly at the xanthene ring provides the shortest possible distance between the molecular π-system and the metal surface for maximum SERS enhancement combined with the strong Au–S interaction for chemisorption. The comparison of experimental SERS spectra obtained from gold nanostars and a film of gold nanoparticles with results from DFT calculations (molecular electrostatic potential, normal modes) suggests adsorption via the thiol groups at the xanthene moiety.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b01504

DOI: 10.1021/acs.jpcc.7b01504

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.