3 years ago

Computational Screening of Porous Organic Molecules for Xenon/Krypton Separation

Computational Screening of Porous Organic Molecules for Xenon/Krypton Separation
Michael E. Briggs, Marcin Miklitz, Kim E. Jelfs, Shan Jiang, Rob Clowes, Andrew I. Cooper
We performed a computational screening of previously reported porous molecular materials, including porous organic cages, cucurbiturils, cyclodextrins, and cryptophanes, for Xe/Kr separation. Our approach for rapid screening through analysis of single host molecules, rather than the solid state structure of the materials, is evaluated. We use a set of tools including in-house software for structural evaluations, electronic structure calculations for guest binding energies, and molecular dynamics and metadynamics simulations to study the effect of the hosts’ flexibility upon guest diffusion. Our final results confirm that the CC3 cage molecule, previously reported as high performing for Xe/Kr separation, is the most promising of this class of materials reported to date. The Noria molecule was also found to be promising, and we therefore synthesized two related Noria molecules and tested their performance for Xe/Kr separation in the laboratory.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b03848

DOI: 10.1021/acs.jpcc.7b03848

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.