3 years ago

Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows

Field-Free Isolation of Exosomes from Extracellular Vesicles by Microfluidic Viscoelastic Flows
JingYan Wei, Chao Liu, Jiashu Sun, Yanping Ding, Jiayi Guo, Fusheng Yan, Na Yang, Guangjun Nie, Guoqing Hu, Fei Tian
Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30–200 nm) poses serious challenges in their isolation from complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we present a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive in the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The proposed technique may serve as a versatile platform to facilitate exosome analyses in diverse biochemical applications.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b02277

DOI: 10.1021/acsnano.7b02277

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.