5 years ago

Core–Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffraction

Core–Shell Structure of Palladium Hydride Nanoparticles Revealed by Combined X-ray Absorption Spectroscopy and X-ray Diffraction
Andrea Lazzarini, Jeroen A. van Bokhoven, Riccardo Pellegrini, Lusegen A. Bugaev, Jenny G. Vitillo, Viktor V. Shapovalov, Aram L. Bugaev, Carlo Lamberti, Kirill A. Lomachenko, Elena Groppo, Alexander V. Soldatov, Alexander A. Guda
We report an in situ, temperature and H2 pressure-dependent, characterization of (2.6 ± 0.4) nm palladium nanoparticles supported on active carbon during the process of hydride phase formation. For the first time the core–shell structure is highlighted in the single-component particles on the basis of a different atomic structure and electronic configurations in the inner “core” and surface “shell” regions. The atomic structure of these particles is examined by combined X-ray powder diffraction (XRPD), which is sensitive to the crystalline core region of the nanoparticles, and by first shell analysis of extended X-ray absorption fine structure (EXAFS) spectra, which reflects the averaged structure of both the core and the more disordered shell. In the whole temperature range (0–85 °C), XRPD analysis confirms the existence of two well-separated α- and β-hydride phases with the characteristic flat plateau in the phase transition region of the pressure-lattice parameter isotherms. In contrast, first shell interatomic distances obtained from EXAFS exhibit a slope in the phase transition region, typical for nanostructured palladium. Such difference is explained by distinct properties of bulk “core” which has crystalline structure and sharp phase transition, and surface “shell” which is amorphous and absorbs hydrogen gradually without forming distinguishable α- and β-phases. Combining EXAFS and XRPD we extract, for the first time, the Pd–Pd first-shell distance in the amorphous shell of the nanoparticles, that is significantly shorter than in the bulk core and relevant in catalysis. The core/shell model is supported by the EXAFS analysis of the higher shells, in the frame of the multiple scattering theory, showing that the evolution of the third shell distance (ΔR3/R3) is comparable to the evolution of (Δa/a) obtained from XRPD since amorphous PdHx shell gives a negligible contribution in this range of distances. This operando structural information is relevant for the understanding of structure-sensitive reactions. Additionally, we demonstrate the differences in the evolution of the thermal parameters obtained from EXAFS and XRPD along the hydride phase formation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04152

DOI: 10.1021/acs.jpcc.7b04152

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.