5 years ago

A reflecting, steepening, and breaking internal tide in a submarine canyon

M. H. Alford, M. M. Hamann, A. J. Lucas, V. Tamsitt, C. Y. Ou, S. Billheimer, M. S. Alberty
Submarine canyons are common features of the coastal ocean. Although they are known to be hotspots of turbulence that enhance diapycnal transport in their stratified waters, the dynamics of canyon mixing processes are poorly understood. Most studies of internal wave dynamics within canyons have focused on a handful of canyons with along-axis slopes less steep than semidiurnal (D2) internal wave characteristics (subcritical). Here, we present the first tidally resolving observations within a canyon with a steeply sloping axis (supercritical). A process study consisting of two 24 h shipboard stations and a profiling mooring was conducted in the La Jolla Canyon off the coast of La Jolla, CA. Baroclinic energy flux is oriented up-canyon and decreases from 182 ±18 W m−1 at the canyon mouth to 46±5 W m−1 near the head. The ratio of horizontal kinetic energy to available potential energy and the observed group speed of each mode are lower than expected for freely propagating D2 internal waves at each station, indicating partial reflection. Harmonic analysis reveals that variance is dominated by the D2 tide. Moving up-canyon, the relative importance of D2 decreases and its higher harmonics are needed to account for a majority of the observed variance, indicating steepening. Steep internal tides cause large isopycnal displacements (∼50 m in 100 m water depth) and high strain events. These events coincide with enhanced O( 10−7−10−5 m2 s−3) dissipation of turbulent kinetic energy at mid-depths.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/2016JC012583

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.