3 years ago
Does multigenerational exposure to hormetic concentrations of imidacloprid precondition aphids for increased insecticide tolerance?
Rachel R. Rix, G. Christopher Cutler
BACKGROUND
Hormetic preconditioning, whereby exposure to mild stress primes an organism to better tolerate subsequent stress, is well documented. It is unknown if exposure to hormetic concentrations of insecticide can trans-generationally prime insects to better tolerate insecticide exposure, or whether exposure to hormetic concentrations of insecticide can induce mutations in genes responsible for insecticide resistance. Using the aphid Myzus persicae (Sulzer) and insecticide imidacloprid as a model, we examined if exposure to mildly toxic and hormetic concentrations of imidacloprid reduced aphid susceptibility to insecticides across four generations, and whether such exposures induced mutations in the imidacloprid binding site in post-synaptic nicotinic acetylcholine receptors.
RESULTS
Chronic, multigenerational exposure of aphids to hormetic concentrations of imidacloprid primed offspring to better survive exposure to certain concentrations of imidacloprid, but not exposure to spirotetramat, an insecticide with a different mode of action. Exposure to hormetic and mildly toxic concentrations of imidacloprid did not result in mutations in any of the examined nicotinic acetylcholine receptor subunits.
CONCLUSION
Our findings demonstrate that exposure to hormetic concentrations of insecticide can prime insects to better withstand subsequent chemical stress, but this is dependent upon the insecticide exposure scenario, and may be subtle over generations.
Publisher URL: http://onlinelibrary.wiley.com/resolve/doi
DOI: 10.1002/ps.4731
You might also like
Never Miss Important Research
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.