3 years ago

Genetically engineering better fungal biopesticides

Raymond John St. Leger, Brian Lovett
Microbial insect pathogens offer an alternative means of pest control with potential to wean our heavy reliance on chemical pesticides. Insect pathogenic fungi play an important natural role in controlling disease vectors and agricultural pests. Most commercial products employ Ascomycetes in the genera Metarhizium and Beauveria. However, their utilization has been limited by inconsistent field results due to sensitivity to abiotic stresses and naturally low virulence. Other naturally occurring biocontrol agents also face these hurdles to successful application, but the availability of complete genomes and recombinant DNA technologies have facilitated design of multiple fungal pathogens with enhanced virulence and stress resistance. Many natural and synthetic genes have been inserted into entomopathogen genomes. Some of the biggest gains in virulence have been obtained using genes encoding neurotoxic peptides, peptides that manipulate host physiology and proteases and chitinases that degrade the insect cuticle. Prokaryotes, particularly extremophiles, are useful sources of genes for improving entomopathogen resistance to UV. These biological insecticides are environmental-friendly and cost-effective insect pest control options.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/ps.4734

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.