3 years ago

A G326E substitution in the glutamate-gated chloride channel 3 (GluCl3) of the two-spotted spider mite Tetranychus urticae abolishes the agonistic activity of macrocyclic lactones

Catherine Mermans, Sven Geibel, Wannes Dermauw, Thomas Van Leeuwen
BACKGROUND The macrocyclic lactones abamectin and milbemectin are frequently used to control phytophagous mites such as Tetranychus urticae. Consequently, resistance has developed and was genetically linked with substitutions in the glutamate-gated chloride channel (GluCl) subunits TuGluCl1 and TuGluCl3. Here, we functionally validated a G326E substitution in TuGluCl3 by functional expression in Xenopus laevis oocytes followed by two-electrode voltage-clamp electrophysiology. RESULTS Homomeric wild-type and mutated GluCl3 were successfully expressed. l-glutamic-acid-induced currents exhibited a rapid onset equal in both channels and EC50 for l-glutamic-acid was in the micromolar range (384.2 μm and 292.7 μm, respectively). Abamectin and milbemycin A4 elicited sustained currents in wild-type GluCl3, but the G326E substitution completely abolished the agonistic activity of macrocyclic lactones. CONCLUSION A target-site mutation in Tu GluCl3 contributes to avermectin resistance in T. urticae. However, given the multitude of channel genes and the potential additive or synergistic effects of mutations, to what extent mutations determine the often extremely strong resistance phenotype in the field deserves further study. © 2017 Society of Chemical Industry

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/ps.4677

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.