5 years ago

Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges

Energy harvesting using air bubbles on hydrophobic surfaces containing embedded charges
Technology to harvest electrical power from waste micro-mechanical energy is increasingly in demand. A promising approach lies in manipulating the electrical double layer on hydrophobic surfaces; however, the underlying mechanism is still unclear. Here, we demonstrate that ascending air bubbles in water can produce electrical power in a mode similar to other systems that use descending water droplets. Although the two systems, which are analogous to electrons and holes in semiconductors, are similar in fundamental principle, their detailed electrification mechanisms are significantly different. In the air bubble system, only the pre-existing charges on the surface are involved. However, electrification in the water droplet system is dominated by triboelectric charges accumulated on the surface over time. An air bubble can produce a maximum of nine times more energy than a water droplet due to its advantages in terms of its geometry, hydrodynamics, and electro-circuitry. We also suggest an innovative approach to improve energy-harvesting efficiency using artificially embedded charges.

Publisher URL: www.sciencedirect.com/science

DOI: S0306261917312448

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.