5 years ago

Electrothermal dynamics-conscious lithium-ion battery cell-level charging management via state-monitored predictive control

Lithium-ion battery charging management has become an enabling technology towards a paradigm shift of electrified mobility. Fast charging is desired for convenience improvements but may excessively degrade battery's health or even cause safety issues. This paper proposes a novel algorithm to manage battery charging operations using a model-based control approach. Based on a fully coupled electrothermal model, the fast charging strategy is formulated as a linear-time-varying model predictive control problem, for the first time. Constraints are explicitly imposed to protect the battery from overcharging and overheating. To enable the state-feedback control, unmeasurable battery internal states including state-of-charge and core temperature are estimated via a nonlinear observer using noisy measurements of current, voltage, and surface temperature. Illustrative results demonstrate that the proposed approach is able to optimally balance time and temperature increase. In addition, it is shown from simulations that the model predictive control based charging algorithm appears promising for real-time implementation.

Publisher URL: www.sciencedirect.com/science

DOI: S0360544217315712

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.