3 years ago

Raman Observation of the “Volcano Curve” in the Formation of Carbonized Metal–Organic Frameworks

Raman Observation of the “Volcano Curve” in the Formation of Carbonized Metal–Organic Frameworks
Szetsen Lee, Zhao-Quan Zhang, Chia-Her Lin, Bing-Han Li, Tsung Pei, Madhan Vinu
The carbonization of various types of metal–organic frameworks (MOFs) was carried out under N2 gas flow and high temperature. The formation of carbonized MOFs (CMOFs) was monitored by Raman spectroscopy. In addition to the well-known D and G bands in Raman spectra, the salient G′ band feature was observed only in Mn-, Fe-, Co-, and Ni-containing CMOFs. On the other hand, CMOFs containing other metals (Al, Cr, V, Cu, and Zr) do not show the G′ band. Furthermore, the G′ band was also observed when we mixed the nitrate salts of Mn(II), Fe(III), and Co(II) with Al-containing MOFs using the same treatment conditions as in the formation of CMOFs. The G′ band is known to be related to the stacking order of graphitic layers. The presence of the Raman G′ band in CMOFs can be ascribed to the catalytic activity of Mn, Fe, Co, and Ni. The trend of the G′ band to G band intensity ratio resembles the “volcano curve” in the description of the behavior of catalytic activities of transition metals. The G′ bands in Mn-, Fe-, Co-, and Ni-containing CMOFs were well-fitted with two-component peaks which indicates that these CMOFs have well-stacked graphitic structures.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07871

DOI: 10.1021/acs.jpcc.7b07871

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.