5 years ago

Nonexponential Kinetics of Loop Formation in Proteins and Peptides: A Signature of Rugged Free Energy Landscapes?

Nonexponential Kinetics of Loop Formation in Proteins and Peptides: A Signature of Rugged Free Energy Landscapes?
James Gowdy, Igor Neelov, Matthew Batchelor, Emanuele Paci
The kinetics of loop formation, i.e., the occurrence of contact between two atoms of a polypeptide, remains the focus of continuing interest. One of the reasons is that contact formation is the elementary event underlying processes such as folding and binding. More importantly, it is experimentally measurable and can be predicted theoretically for ideal polymers. Deviations from single exponential kinetics have sometimes been interpreted as a signature of rugged, protein-like, free energy landscapes. Here we present simulations, with different atomistic models, of short peptides with varied structural propensity, and of a structured protein. Results show exponential contact formation kinetics (or relaxation) at long times, and a power law relaxation at very short times. At intermediate times, a deviation from either power law or simple exponential kinetics is observed that appears to be characteristic of polypeptides with either specific or nonspecific attractive interactions but disappears if attractive interactions are absent. Our results agree with recent experimental measurements on peptides and proteins and offer a comprehensive interpretation for them.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b07075

DOI: 10.1021/acs.jpcb.7b07075

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.