5 years ago

Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries

Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries
Na3V2O2(PO4)2F (NVOPF) is a promising cathode material for sodium-ion batteries (SIBs) due to its high working voltage and theoretical capacity. However, the electrochemical performance is strongly impeded by its poor intrinsic electronic conductivity. Herein, we integrated the high flexible graphene sheets with NVOPF through a spray-drying method to re-construct its structure. The NVOPF nanocrystalline particles are homogeneously embedded in the high electronic conductive graphene framework. As a cathode of SIBs, the robust NVOPF/rGO microsphere composite exhibits excellent electrochemical performance: high specific capacity (127.2mAhg−1), long-term cycling stability (83.4% capacity retention at 30C after 2000 cycles) and superior high rate performance (70.3mAhg−1 at 100C). Furthermore, the Na+ insertion/extraction mechanism is also investigated by in-situ XRD and ex-situ HRTEM monitor technologies. This work demonstrates that the constructed 3D graphene skeleton serves as a high-efficient electronic conduction matrix and improves the electrochemical properties of electrode materials for advanced energy storage applications.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517306018

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.