3 years ago

Chiral behavior in rat tail tendon fascicles

Ex vivo tendon mechanical behavior has been well described under rotationally constrained uniaxial tensile testing. During standard loading of rat tail tendon (RTT) fascicles, apparent axial twist has been observed. To quantify this behavior, we designed a custom testing setup, utilizing magnetic suspension, to allow unconstrained axial rotation during tensile loading. We characterized the rotational behavior of single and paired RTT fascicles under cyclic loading. We also measured stress relaxation across loading cycles as well as “rotational relaxation”. Single fascicle nonlinear stretch-twist coupling is well described by the asymptotic function Δ θ = A ( 1 - e - B ε ) in which fascicles rotated a mean ± 51.1° within about 1% applied axial strain. On average, paired fascicles rotated just over 10°. less. Specimen cross-sectional diameter had a noticeable effect on the measured mechanical properties, particularly effective elastic modulus. Such stretch-twist couplg and size dependence cannot be understood via classical elasticity but is predicted by Cosserat (micropolar) elasticity. The current study demonstrates RTT fascicles are chiral based on observed axial load-induced twist. Additionally, our findings support existing research that suggests a helical fascicle structure. Potential consequences of helical substructures, mechanical and biological, merit further investigation.

Publisher URL: www.sciencedirect.com/science

DOI: S0021929017305079

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.